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To provide guidance to clinicians, the Wilderness Medical Society convened experts to develop evidence-
based guidelines for water disinfection in situations where the potability of available water is not ensured,
including wilderness and international travel, areas affected by disaster, and other areas without adequate
sanitation. The guidelines present the available methods for reducing or eliminating microbiologic contam-
ination of water for individuals, groups, or households; evaluation of their effectiveness; and practical con-
siderations. The evidence evaluation includes both laboratory and clinical publications. The panel graded the
recommendations based on the quality of supporting evidence and the balance between benefits and risks or
burdens, according to the criteria published by the American College of Chest Physicians.

Keywords: drinking water, water purification, water microbiology, disaster planning, pasteurization,
halogens
Introduction

Safe and efficient treatment of drinking water is among the
major public health advances of the last century. Without
treatment, waterborne diseases can spread rapidly, resulting
in large-scale disease and death.1,2 In industrialized nations,
the population generally is protected from waterborne dis-
ease by sophisticated water supply systems that disinfect
water and provide continuous monitoring. In contrast, tra-
velers to wilderness and recreational areas anywhere in
the world and to underdeveloped regions of some countries
may be confronted with untreated or contaminated water
that poses a risk of acquiring enteric disease. In addition,
disaster situations, such as the 2017 hurricanes that affected
Houston, Texas, and Puerto Rico, may result in a break-
down of municipal water systems, exposing victims to non-
potable water. These situations necessitate knowledge of
how to disinfect water at the point-of-use, prior to drinking.
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Methods of water treatment that can be applied in the field
include the use of heat, ultraviolet light, clarification, filtra-
tion, and chemical disinfection. The choices for the wilder-
ness hiker or international traveler are increasing as new
technology is applied to field applications. Different microor-
ganisms have varying susceptibilities to these methods. The
risk of waterborne illness depends on the number and type
of organisms consumed, host factors, and the efficacy of
the treatment system.

Methods

To develop these guidelines, specialists with expertise in
wilderness medicine, travel medicine, public health, and
microbiology were chosen on the basis of their clinical or
research experience. Relevant articles were identified
through the PubMed database using the following keywords
or phrases: water disinfection, waterborne illness, wilderness
water, water filtration, emergency or disaster drinking water
treatment. This was supplemented by a hand search of arti-
cles from references in the initial PubMed search. Conclu-
sions from review articles were cited in an effort to provide
background information and to augment reference selection.
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The evidence base for water disinfection has substantial
differences from other clinical guidelines. Most of the lit-
erature concerning the effectiveness of specific disinfec-
tants and methods against various waterborne
microorganisms is laboratory based. Evidence on the bene-
fits of disinfection is either population-based public health
research of disease outbreaks or randomized household
trials of water disinfection that are influenced by compli-
ance and hygiene. Therefore, the evidence grade is a combi-
nation of laboratory, population, and household- or
community-level studies.

The authors used a consensus approach to develop
recommendations for the disinfection of water. Water treat-
ment techniques and recommendations were not evaluated
for the removal of chemicals or toxins. Evidence grades
were assigned according to methodology stipulated by the
American College of Chest Physicians for grading of evi-
dence and recommendations3 (online Supplementary
Table 1). These recommendations are graded on the basis
of the totality of supporting evidence and balance between
the benefits and risks or burdens for each modality.
Etiology and Risk of Waterborne Infection

WILDERNESS SETTINGS

Millions of people enter wilderness areas each year and
drink surface water. Even in developed countries with low
rates of diarrheal illness, regular waterborne disease out-
breaks indicate that the microbiologic quality of the water,
especially surface water, is not ensured.4e7 Public health
agencies regularly report outbreaks of disease associated
with surface water from backcountry and parks as well as
from campground water systems. The environment and
activity upstream from the travelers’ surface water source
defines the risk. Side streams draining springs, snowmelt,
and glaciers where there is no human or animal activity
are lower risk. In contrast, upstream usage by humans,
farm animals, or wildlife pose a major risk. Cattle excrete
pathogenic strains of Escherichia coli and Salmonella and
have been found in multiple studies to be the major animal
species contributing to waterborne disease in North
America.8,9 Giardiasis is a zoonotic infection with numer-
ous host species, including farm animals, deer and other
wild ungulates, beavers, and even household animals; how-
ever, the extent of transmission to humans is less defined.10

Nonalpine wilderness areas in the United States may
have streams and rivers that are contaminated with animal
waste, including farm animal runoff, or may be contami-
nated with incompletely treated sewage from towns and
urban areas. In many countries, wilderness areas are co-
occupied by local populations and domesticated animals
that pollute water sources. Because it is very difficult to
exclude animal and human activity in the watershed, the
Centers for Disease Control recommend treating surface
water before ingestion as a precaution to protect health.
INTERNATIONAL TRAVEL

Substantial progress has been made in the past 20 years
toward the goal of safe drinking water and sanitation world-
wide, particularly in Asia and Latin America11; however,
780 million people (11% of world population) still lack a
safe water source, and 2.5 billion people lack access to
improved sanitation. Africa and Oceania are the regions
with the greatest need for improvement.More than 890mil-
lion persons still practice open defecation, the largest num-
ber being in India and Africa.11e13 Studies in
underdeveloped regions around the world show high levels
of microbes in the environment and water sources.14e18

Contamination of tap water commonly occurs because of
antiquated and inadequately monitored waste disposal,
water treatment, and distribution systems.19,20

In both developed and developing countries, after nat-
ural disasters such as hurricanes, tsunamis, and earth-
quakes, one of the most immediate public health problems
is a lack of potable water. Wilderness visitors and interna-
tional travelers have no reliable resources to evaluate local
water system quality. Less information is available for
remote surface water sources. Appearance, smell, and
taste are not reliable indicators to estimate water safety.

Infectious agents with the potential for waterborne trans-
mission include bacteria, viruses, protozoa, and nonpro-
tozoan parasites. The list of microbial agents is similar to
the list of microorganisms that can cause travelers’ diarrhea,
most of which can be waterborne as well as foodborne.
Although the primary reason for disinfecting drinking
water is to destroy microorganisms from animal and
human biologic wastes, water may also be contaminated
with toxins and chemical pollutants from industrial sources
or from the environment. Escherichia coli and Vibrio cho-
lerae may be capable of surviving indefinitely in tropical
water. Enteric bacterial and viral pathogens survive in tem-
perate water generally only several days; however, some
species such as E coli O157: H7 can survive 12 weeks at
25�C.21 Most enteric organisms, including Shigella spp,
Salmonella enterica serotype Typhi, hepatitis A, and Cryp-
tosporidium spp, can retain viability for long periods in cold
water and can even survive for weeks when frozen in water.

The risk of waterborne illness depends on the number of
organisms consumed, which is in turn determined by the
volume of water, concentration of organisms, and treatment
system efficiency.22,23 Additional factors include virulence
of the organism and defenses of the host. Microorganisms
with a small infectious dose (eg,Giardia, Cryptosporidium,
Shigella spp, hepatitis A, enterohemorrhagic E coli, and
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norovirusdthe leading viral disease risk in water contami-
nated with human waste) may cause illness even from inad-
vertent drinking during water-based recreational
activities.10 Most diarrhea among travelers is probably
foodborne; however, the capacity for waterborne transmis-
sion should not be underestimated. Because long-lasting
immunity does not develop for most enteric pathogens,
reinfection may occur.

The combined roles of safe water, hygiene, and adequate
sanitation in reducing diarrhea and other diseases are clear
and well documented. The World Health Organization
(WHO) estimates that 94% of diarrheal cases globally are
preventable through modifications to the environment,
including access to safe water.1 Recent studies of simple
water interventions in households of developing countries
clearly document improved microbiological quality of
water, a 30 to 60% reduced incidence of diarrheal illness,
enhanced childhood survival, and reduction of parasitic dis-
eases, many of which are independent of other measures to
improve sanitation.24

General recommendations for drinking water
disinfection:

� Treat water when traveling in developing countries.
Evidence grade: 1A

� Treat water in wilderness areas with nearby agricul-
tural use, animal grazing, or upstream human activity.
Evidence grade: 1A

� Treat water in wilderness settings without evidence of
domestic animal and little to no wildlife or human activ-
ity. Evidence grade: 2B

� Treat water in disaster situations affecting municipal or
private drinking water sources. Evidence grade: 1A

Water Treatment Methods

Multiple techniques for improving the microbiologic qual-
ity of water are available to individuals and small groups
while hiking or traveling. Bottled water may be a conveni-
ent and popular solution but creates ecologic problems.
Furthermore, in underdeveloped countries, the quality of
bottled water may not meet the standards of developed
countries and may contain pathogenic microbes.25

The term disinfection, the desired result of field water
treatment, is used here to indicate the removal or destruc-
tion of harmful microorganisms, which reduces the risk of
illness. This is sometimes used interchangeably with purifi-
cation, but the latter term more accurately indicates the
removal of organic or inorganic chemicals and particulate
matter to improve color, taste, and odor. Unless specifically
designed to remove chemical contaminants, disinfection
techniques may not make water safe from chemical expo-
sures. Potable implies drinkable water, but it technically
means that a water source, on average, over a period of
time, contains a minimal microbial hazard so that the statis-
tical likelihood of illness is acceptably low. All standards,
including water regulations in the United States, acknowl-
edge the impracticality of trying to eliminate all microor-
ganisms from drinking water. Generally, the goal is a 3 to
5 log reduction (99.9e99.999%), allowing a small risk of
enteric infection. Newer standards from the US Environ-
mental Protection Agency (US EPA) and the WHO set tar-
get goals to reduce some organisms to zero; however, all
enforceable standards allow a small risk for enteric
infection.26

Product Testing and Rating

Filters are rated by their ability to retain particles of a certain
size, which is described by 2 terms. Absolute rating means
that 100% of a certain size of particle is retained by the filter
(ie, filtered-out). Nominal rating indicates that >90% of a
given particle size will be retained. Filter efficiency is gen-
erally determined with hard particles (beads of known dia-
meter), but microorganisms are soft and compressible
under pressure. The US EPA and NSF International are
the primary agencies that set standards for disinfection pro-
ducts and protocols for testing to meet these standards.

The US EPA does not endorse, test, or approve mechan-
ical filters; it merely assigns registration numbers that dis-
tinguish between 2 types of filters: those that use
mechanical means only and those that use a chemical desig-
nated as a pesticide. Portable water treatment device claims
for microbiologic reduction are based on consensus perfor-
mance standards that serve as a guideline for testing.27

Testing is done or contracted by the manufacturer; the US
EPA neither tests nor specifies laboratories. Testing must
be done with bacteria (Klebsiella), viruses (poliovirus and
rotavirus), and protozoa (Cryptosporidium has replaced
Giardia). A 3-log reduction (99.9%) is required for proto-
zoan cysts, 4-log reduction (99.99%) for viruses, and 5- to
6-log reduction for bacteria. To be called a microbiologic
water purifier, the unit must remove, kill, or inactivate all
types of disease-causing microorganisms from the water,
including bacteria, viruses, and protozoan cysts, so as to
render the processed water safe for drinking. An exception
for limited claims may be allowed for units removing speci-
fic organisms to serve a definable environmental need, for
example, removal of protozoan cysts.27

Clarification Techniques

Clarification refers to techniques that reduce the turbidity or
cloudiness of water caused by natural organic and inorganic
material. (Turbidity is measured in nephelometric turbidity
units [NTU].) These techniques can markedly improve the
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appearance and taste of water. Theymay reduce the number
of microorganisms, but not enough to ensure potable water;
however, clarifying the water facilitates disinfection by fil-
tration or chemical treatment. Cloudy water can rapidly
clog filters designed to remove microorganisms. Moreover,
cloudy water requires increased levels of chemical treat-
ment, and the combined effects of the water contaminants
plus chemical disinfectants results in unpleasant taste.

Adsorption

Granular activated carbon (GAC) is widely used in water
treatment. When activated, charcoal’s regular array of car-
bon bonds is disrupted, making it highly reactive for
adsorbing dissolved chemicals.28,29 GAC is the best
means to remove toxic organic and inorganic chemicals
from water (including disinfection byproducts) and to
improve odor and taste.30,31 Thus, it is widely used inmuni-
cipal disinfection plants, in household under-sink devices,
and in portable water filters. In field water treatment,
GAC is best used after chemical disinfection to make
water safer and more palatable by removing disinfection
byproducts and pesticides, as well as many other organic
chemicals and some heavy metals. It removes the taste of
chemical disinfectants such as iodine and chlorine.

GAC does not kill microorganisms and is not designed
for microbial removal; in fact, bacteria attach to charcoal,
where they are resistant to chlorination because the chlorine
is adsorbed by the GAC.30e32

Sedimentation

Sedimentation is the separation of suspended particles such
as sand and silt that are large enough to settle rapidly by
gravity. Most microorganisms, especially protozoan cysts,
also settle eventually, but this takes much longer.33 Simply
allowing the water to sit undisturbed for about 1 h or until
sediment has formed on the bottom of the container and
then decanting or filtering the clear water from the top
through a coffee filter or finely woven cloth will remove
many larger particles from the water. A second method of
disinfection must then be used to obtain potable water.

Coagulationeflocculation

Coagulationeflocculation (C-F) is a technique that has
been in use since 2000 BC and remains a routine step in
municipal water treatment.34,35 C-F can remove smaller
suspended particles and chemical complexes too small to
settle by gravity (colloids). Coagulation is achieved with
the addition of a chemical that causes particles to stick
together by electrostatic and ionic forces. Flocculation is a
physical process that promotes the formation of larger par-
ticles by gentle mixing. Alum (an aluminum salt), lime
(alkaline chemicals principally containing calcium or mag-
nesium with oxygen), or iron salts are commonly used coa-
gulants. Alum is nontoxic and used in the food industry for
pickling. It is readily available in most chemical supply
stores and some grocery stores. C-F removes 60 to 98%
of microorganisms, heavy metals, and some chemicals
and minerals.36,37 The tendency of microorganisms to
clump with small particles or clump together to form larger
aggregates enhances their removal by C-F. C-F also has the
benefit of reducing the amount of chemical disinfectant
needed because turbidity increases demand for disinfectants
such as hypochlorite.37e39

The amount of alum added in the field, approximately 1
large pinch (1 mL or 1/8 tsp) per 4 L (approximately 1 gal)
of water, need not be precise. Stir or shake briskly for 1 min
to mix, and then agitate gently and frequently for at least 5
min to assist flocculation. If the water is still cloudy, add
more flocculent and repeat mixing. After at least 30 min
for settling, pour the water through a fine-woven cloth or
paper filter. Although most microorganisms are removed
with the floc, a final process of microbiologic filtration or
chemical disinfection (below) should be completed to
ensure disinfection. Several products combine C-F with
halogen disinfection, which allows a single-step
process.40e43
Improvisational techniques for clarification

Many inorganic and organic compounds can be used as a
coagulant, including lime (calcium oxide) or potash (from
wood ash).44 In an emergency, bleaching powder, baking
powder, or even the fine white ash from a campfire can be
used.45 Other C-F agents used traditionally by native peo-
ples include seed extracts from the nirmali plant in southern
India, moringa plants in Sudan, crushed almonds, dried and
crushed beans, and rauwaq (a form of bentonite clay).46

Adsorbents such as charcoal, clay, and other types of
organic matter have been used for water treatment since
biblical times.32 These substances are used as the filter
media and also can act as coagulants.47 Clays can decrease
turbidity and microbes in water by about 90 to 95%, but
adsorption is not the main action of ceramic or clay filters.

Assessment of supporting evidence:

� Clarification reduces cloudiness, particulate matter, and
waterborne microorganisms; improves the taste and
esthetics of water; and improves the effectiveness of che-
mical disinfectants, filtration, and ultraviolet disinfection.
However, it does not reliably disinfect if used alone.
Evidence grade: 1A

� GAC is highly effective at removing taste and odor
compounds but is not adequate for microbial removal.
Evidence grade: 1A



Table 2. Boiling temperatures at various altitudes

Altitude (ft) Altitude (m) Boiling point

5000 1524 95�C (203�F)
10,000 3048 90�C (194�F)
14,000 4267 86�C (187�F)
19,000 5791 81�C (178�F)

Table 1. Heat inactivation of microorganisms

Organism Lethal
temperature/Time

Reference

Protozoan cysts,
including Giardia,
Entamoeba
histolytica

50�C (122�F) for 10
min
55�C (131�F) for 5 min
100�C (212�F)
immediately

53e55

Cryptosporidium
oocysts

55�C (131�F) warmed
over 20 min
64�C (148�F) within
2 min

50,56

Parasitic eggs, larvae,
and cercariae

50�Ce55�C
(122e131�F)

57

Common bacterial
enteric pathogens (E
coli, Salmonella,
Campylobacter,
Shigella)

55�C (131�F) for
30 min or 65�C (149�F)
for less than 1 min
(standard pasteurization
temperatures)

48,51

Viruses 56�Ce60�C
(133e140�F) in less
than 20e40 min

52,58,59

Hepatitis A virus 98�C (208�F) for 1 min
75�C (167�F) for less
than 0.5 min
85�C (185�F) for 1 min
or less (in various food
products)

60e62
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� Sedimentation is effective for removing large particles
such as sand and dirt but will not remove suspended or
dissolved substances (see C-F). Evidence grade: 2B

� C-F removes most microorganisms, but it does not reli-
ably disinfect if used alone. Evidence grade: 1A

� Traditional or improvisational C-F techniques (other
than alum or those used in municipal disinfection
plants) have empiric evidence but do not have robust
scientific evidence or practical use guidance and
should be used with caution to protect the health of
consumers. Evidence grade: 2C

Disinfection Methods

HEAT
Heat is the oldest and most reliable means of water disinfec-
tion. Heat inactivation of microorganisms is a function of
time and temperature (exponential function of first-order
kinetics). Thus, the thermal death point is reached in a
shorter time at higher temperatures, whereas lower tem-
peratures are effective if applied for a longer time. Pasteur-
ization uses this principle to kill food pathogens and
spoiling organisms at temperatures well below boiling, gen-
erally between 60�C (140�F) and 70�C (158�F). Flash
pasteurization occurs within 30 s at 70 to 72�C
(158 to 162�F).48,49

All common enteric pathogens are readily inactivated by
heat at pasteurization temperatures, although microorgan-
isms vary in heat sensitivity, with protozoan cysts being
the most sensitive to heat, bacteria intermediate, and viruses
less sensitive (Table 150e62).50,51 Only bacterial spores are
more resistant, but they are not generally enteric
pathogens.52

As enteric pathogens are killed within seconds by boil-
ing water rapidly at temperatures>60�C (140�F), the tradi-
tional advice to boil water for 10 min to ensure potable
water is excessive. The time required to heat water from
55�C (131�F) to a boil works toward disinfection; therefore,
any water brought to a rapid boil should be adequately
disinfected.63 Boiling for 1 min is recommended by the
US CDC to account for user variability in identifying boil-
ing points and adds a margin of safety. The boiling point
decreases with increasing altitude, but this is not significant
compared with the time required for thermal death at these
temperatures (Table 2).

Improvisational techniques

In wilderness or travel environments, the main limita-
tion for using heat is availability of fuel. Although
attaining boiling temperature is not necessary to kill
microorganisms, boiling is the only easily recognizable
endpoint without use of a thermometer. Based on
microbiologic testing, hot tap water has been proposed
as a means of heat disinfection.64,65

Most water from hot water taps measured in countries
outside the United States measured 55 to 60�C (131 to
140�F).51 As a rule of thumb, water too hot to touch fell
within the pasteurization range, but tolerance to touch is
too variable to be reliable.66

If no reliable method of water treatment is available, tap
water that has been kept hot in a tank for at least 30 min and
is too hot to keep a finger immersed for 5 s (estimated 55 to
65�C; 131 to 149�F) is a reasonable alternative. However,
this improvisational measure is less useful for hotels that
use on-demand water heaters without a hot water tank. Tra-
velers with access to electricity can boil water with either a
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small electric heating coil or a lightweight electric beverage
warmer brought from home. In austere and desperate situa-
tions with hot, sunny climate, pasteurization temperature
can be achieved with a solar oven or simple reflectors67,68

(see the Solar UV Disinfection [UVeSODIS] section).
Assessment of supporting evidence:

� Bringingwater to boil (100�C/212�F)will kill pathogenic
microorganisms. Evidence grade: 1A

� Bringing water at 5000 m (16,000 ft) elevation to
boil (83�C/181�F) will kill pathogenic organisms.
Evidence grade: 1B

� Tap water that has been tanked for 30 min or longer and is
too hot to touch (60�C) has a significantly reduced number
of pathogenic microorganisms, but this cannot be relied on
as the sole means of disinfection. Such water may contain
increased amounts of lead or other chemicals from
the water heater and piping. Evidence grade: 2B

� Pasteurization temperatures can be achieved with a solar
oven. Evidence grade: 2B

ULTRAVIOLET LIGHT
Ultraviolet (UV) radiation and UV lamp disinfection sys-
tems are widely used to disinfect drinking water at the com-
munity and household levels. At sufficient doses, all
waterborne enteric pathogens are inactivated by UV radia-
tion (UVR). UVC light in the range of 200 to 280 nm is
the most effective. The germicidal effect of UV light is
the result of action on the nucleic acids of microorganisms
and depends on light intensity and exposure time. In suffi-
cient doses of energy, all waterborne enteric pathogens
are inactivated by UVR.69 The UV waves must strike the
organism, so the water must be free of particles that could
act as a shield.70 The UV waves do not alter the water,
but they also do not provide any residual disinfecting
power.71 Bacteria and protozoan parasites generally require
lower doses than do enteric viruses and bacterial spores.
However, all viruses, including hepatitis A and norovirus,
are susceptible, with relatively minor differences, and fol-
low similar kinetics. The vegetative cells of bacteria are sig-
nificantly more susceptible to UVR than are bacterial
spores or viruses.Giardia andCryptosporidium are suscep-
tible to practical doses of UVR and may be more sensitive
because of their relatively large size.72e74 Both large
high-volume units and portable, lightweight battery-oper-
ated units are available for disinfection of small quantities
of water.

Improvisational technique: UV-SODIS

UV irradiation by sunlight can substantially improve the
microbiologic quality of water and reduce diarrheal illness
in developing countries.75e85 The optimal procedure for
the SODIS technique is to use transparent bottles (eg,
clear plastic beverage bottles), preferably lying on a dark
surface and exposed to sunlight for a minimum of 4 h
with intermittent agitation.86 UV and thermal inactivation
are strongly synergistic for the solar disinfection of drinking
water.67,87,88

Assessment of supporting evidence:

� UV light is an effective means of water disinfection.
Evidence grade: 1A

� Full sunlight exposure of clear water in a clear plastic
bottle for at least 4 h significantly reduces and
possibly eliminates microorganism contamination
(Evidence grade: 1B); however, studies evaluating
this technique for reduction of childhood diarrhea
show mixed results. Evidence grade: 2B

FILTRATION
Filters are appealing because of their simplicity and suit-
ability for commercial production. Portable water treatment
products are the third highest intended purchase of outdoor
equipment, after backpacks and tents.89 Filtration is a stan-
dard step in municipal water treatment and widely used in
the food and beverage industry and in many other industrial
processes. Many different types of media, from sand to
vegetable products to fabric have been used for water filtra-
tion throughout history in various parts of the world.90 Fil-
ters have the advantages of being simple and requiring no
holding time. They do not add any unpleasant taste and
may improve taste and appearance of water. All filters even-
tually clog from suspended particulate matter (present even
in clear streams), requiring cleaning or replacement of the
filter. As a filter clogs, it requires increasing pressure to
drive the water through it, which can force microorganisms
through the filter or damage the filter. A crack or eroded
channel in a filter will allow passage of unfiltered water.
Bacteria can grow on filter media and potentially result in
some bacteria in filtered water, but pathogenic bacteria
and illness have not been demonstrated.91 Silver is often
incorporated into the filter media to prevent this growth,
but it is not totally effective.

The primary determinant of a microorganism’s suscept-
ibility to filtration is its size (Table 3; Figure 1). Portable fil-
ters for water treatment can be divided into microfilters with
pore sizes down to 0.1 mm, ultrafilters that can remove par-
ticles as small as 0.01 mm, nanofilters with pore sizes as
small as 0.001 mm or less, and reverse osmosis filters with
pore sizes of 0.0001 mm or less.69 All filters require pres-
sure to drive the water through the filter element. The smal-
ler the pore size, the more pressure required. Waterborne
pathogens often adhere to larger particles or clump
together, making them easier to remove by physical pro-
cesses. Therefore, observed reductions are often greater
than expected based on their individual sizes.



Table 3. Microorganism susceptibility to filtration

Organism Approximate
size (mm)

Recommended filter
rating (mm)

Virusesa 0.03 Ultrafilter, nanofilter,
reverse osmosis

Escherichia coli 0.5 by 3e8 0.2e0.4 (microfilter)
Campylobacter 0.2e0.4 by

1.5e3.5
V cholerae 0.5 by

1.5e3.0
Cryptosporidium
oocyst

2e6 1 (microfilter)

Giardia cyst 6e10 by
8e15

3e5 (microfilter)

Entamoeba
histolytica cyst

5e30
(average 10)

Nematode eggs 30e40 by
50e80

20 (microfilter)

Schistosome
cercariae

50 by 100 Coffee filter or fine cloth,
or double thickness
closely woven clothDracunculus

larvae
20 by 500

a Microfilters (includes most filters with pore size of 0.1e0.2 mm) can
filter bacteria and protozoan cysts, but are not effective for virus removal
unless designed to rely on electrostatic trapping of viruses. Hollow fiber fil-
ters with 0.02 mm pores and reverse osmosis filters are capable of filtering
viruses.
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Most portable filters are microfilters that can readily
remove protozoan cysts and bacteria but may not remove
all viruses, which are much smaller than the pore size of
most field filters.92,93 Viruses often clump together and to
other larger particles or organisms, resulting in an aggregate
Figure 1. Levels of filtration and susceptibility of common microbia
disinfection for international travelers. In: Keystone JS, Kozarsky PE, C
2019:31e41. Copyright 2019, reprinted with permission from Elsevier.
large enough to be trapped by the filter; in addition, electro-
chemical attraction may cause viruses to adhere to the filter
surface.47,94,95 Through these mechanisms, mechanical fil-
ters using ceramic elements with a pore size of 0.2 mm can
reduce viral loads by 2 to 3 logs (99e99.9%), but they are
not adequate for complete removal of viruses.96 Ultrafiltra-
tion membranes are required for complete microbial
removal, including viruses; they can also remove colloids
and some dissolved solids.97

Recently, hollow-fiber technology has been adapted for
field use; this technology uses bundles of tube fibers
whose pore size can be engineered to achieve ultrafiltration
with viral removal.98 The large surface area allows these
hollow-fiber filters to have relatively high flow rates at
low pressure. Small group and individual gravity or hand
pump filters are available through several vendors.

Some filters on the market combine the porous filter
material with other substances to help the disinfection
process. This may include activated charcoal, iodine,
silver, and other substances. Iodine molecules can be
bound in a resin engineered into field products, but the
effectiveness of the resin is highly dependent on the
product design and function. Most companies have
abandoned iodine resinecontaining portable hand-
pump filters due to excess iodine or viral breakthrough
in the effluent. Only one drink-through bottle remains
on the US market, but other products may still be avail-
able outside the United States. (GAC was discussed ear-
lier, and silver is addressed later.)

Several factors influence the decision of which filter to
buy: 1) flow volume sufficient for the number of persons
relying on the filter; 2) whether the filter functional claims
l pathogens and other contaminants. Adapted from Backer H. Water
onnor BA, eds. Travel Medicine. 4th ed. Philadelphia, PA: Elsevier;

Image of Figure 1
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matches the microbiologic demands that will be put on the
filter; 3) the preferred means of operation (eg, hand pump or
gravity); and 4) cost.
Improvisational filtration techniques

Filtration using simple, available products, such as rice hull
ash filters, crushed charcoal, sponges, and various fabrics
and paper, have all been used in developing countries and
in emergency situations. Typically, bacteria and viruses
can be reduced by as much as 50 to 85% and larger para-
sites by 99%, depending on the media. The effectiveness
for decreasing turbidity may be used as an indicator that a
filter material will reduce microbiologic contamination.38,
99,100

Ceramic filters are a common component in portable
water pump filters, but they are also a cost-effective
means of household disinfection in developing countries.
Ceramic clay is widely available and very inexpensive to
locally manufacture in the shape of a sink or flower pot
that is set into a larger container that collects the filtered
water.101e107

Biosand filters use a technology that has been used
over centuries and is still used widely in municipal
plants and at the household and community level.-
108e111 Sand filters can be highly effective at removing
turbidity (in 1 study, from 6.2 NTU to 0.9 NTU) and
improving microbiologic quality (99% efficacy),
depending on their design and operation.112,113 Sand
filters are constructed by forming layers of aggregate
increasing in size from the top to the bottom. The top
layer is very fine sand and the bottom layer consists of
large gravel. The container needs an exit port on the bot-
tom. The top layer forms a biolayer that is important for
the function of the filter. The optimum depth of a com-
munity or household sand filter is 2 m, with diameter
determined by the volume of water needed. An emer-
gency sand filter can be made in a 20 L (5.3 gal) bucket,
composed of a 10 cm (3.9 in) layer of gravel beneath a
23 cm (9.1 in) layer of sand; a layer of cotton cloth,
sandwiched between 2 layers of wire mesh, separates
the sand and gravel layers.38 A sand filter also can be
improvised with stacked buckets of successive filter
layers with holes in the bottom to allow water passage.
Many websites provide design and assembly instruc-
tions, but there are no data for comparative function.

Assessments of supporting evidence:

� Filtration is effective as a primary or adjunctive means of
water treatment. Evidence grade: 1A

� Standard commercially available microfilters with a pore
size of 0.2 microns are effective in removing protozoa
and bacteria. Evidence grade: 1A
� Ultrafiltration with pore size of less than 0.01 is
needed to completely remove pathogenic viruses.
Evidence grade: 1A

� Filters may clog, so users should know how to clean them
or consider carrying a backup method of disinfection.
Evidence grade: 1C

� Biosand filters are a reasonable improvised technique for
filtration. Evidence grade: 1B

CHEMICAL DISINFECTION: HALOGENS (IODINE
AND CHLORINE)
Worldwide, disinfection with chemicals, chiefly chlor-
ine, is the most commonly used method for improving
and maintaining the microbiologic quality of drinking
water and can be used by individuals and groups in the
field.114 The germicidal activity of chlorine and other
halogens is well established and results from oxidation
of essential cellular structures and enzymes.115,116 Dis-
infection effectiveness is determined by characteristics
of the microorganism, the disinfectant, contact time,
and environmental factors. Both chlorine and iodine
are widely available worldwide in multiple formula-
tions. The most commonly available form of chlorine
is hypochlorite (household bleach [5 to 8%] or concen-
trated swimming pool granules or tablets [70%]).

Both chlorine and iodine have been used for water disin-
fection for more than a century. Hypochlorite, the major
chlorine disinfectant, is currently the preferred means of
municipal water disinfection worldwide. Both calcium
hypochlorite (Ca[OCl]2) and sodium hypochlorite
(NaOCl) readily dissociate in water to form hypochlorite,
the active disinfectant.

Iodine is also effective in low concentrations for killing
bacteria, viruses, and some protozoan cysts; in higher con-
centrations, it is effective against fungi and even bacterial
spores. However, it is a poor algaecide. Elemental iodine
(I2) and hypoiodous acid (HOI) are the major germicides
in an aqueous solution. Iodine is the only halogen that is a
solid at room temperature.

Given adequate concentrations and contact times, both
iodine and chlorine are effective disinfectants with similar
biocidal activity under most conditions.117 Taste preference
is individual. Of the halogens, iodine reacts least readily
with organic compounds and is less affected by pH, indicat-
ing that low iodine residuals should be more stable and per-
sistent than corresponding concentrations of chlorine.
Despite these advantages, because of its physiologic activ-
ity, WHO recommends iodine only for short-term emer-
gency use.

Chlorine is still advocated by the WHO and the CDC as
a mainstay of large-scale community, individual household,
and emergency use.118,119 There are extensive data on
effectiveness of hypochlorite in remote settings.69,120e122
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The CDC/WHO safe water system for household disinfec-
tion in developing countries provides a dosage of 1.875 or
3.75 mg$L-1 of sodium hypochlorite with a contact time
of 30 min, which is sufficient to inactivate most bacteria,
viruses, and some protozoa that cause waterborne diseases.-
123 Another advantage of hypochlorite is the ease of adjust-
ing the dose for large volumes of water.45,99

Vegetative bacteria (nonspore forming) are very sensitive
to halogens.116,124 Viruses, including hepatitis A, have inter-
mediate sensitivity, requiring higher concentrations or longer
contact times.125e130 Protozoan cysts are more resistant than
enteric bacteria and enteric viruses but some cysts (eg,Giar-
dia) can be inactivated by field doses of halogens.131e135

Cryptosporidium oocysts, however, are much more resistant
to halogens, and inactivation is not practical with common
doses of iodine and chlorine used in field water disinfection.-
136,137 Little is known aboutCyclospora, but it is assumed to
be similar to Cryptosporidium. Certain parasitic eggs, such
as those of Ascaris, are also resistant, but these are not com-
monly spread by water. (All of these resistant cysts and eggs
Table 4. Disinfection data for chlorine and iodine to achieve 99.9%

Organism Concentration
(mg$L-1)

Time
(min)

pH

Chlorine
Escherichia coli 0.1 0.16 6.0
Campylobacter 0.3 0.5 6.0e
20 enteric virus 0.5 60 7.8
6 enteric viruses 0.5 4.5 6.0e
Norovirus 1

5
10
20
sec

6.0

Hepatitis A virus 0.5 1 6.0
Amebic cysts 3.5 10
Giardia cysts 2.5 60 6.0e
Giardia lamblia
cysts

0.85 90 8.0

Giardia muris
cysts

3.05 50 7.0

Cryptosporidium
(2 strains)

20
20

755
501

7.5
7.5

Iodine
Escherichia coli 1.3 1 6.0e

Hepatitis Az 8 .4 7.0
Coxsackie virus 0.5 30 7.0
Amebic cysts 3.5 10
Giardia cysts 4 15 5.0
Giardia cysts 4 45 5.0
Giardia cysts 4 120 5.0

a 99.9% is for comparison of disinfection potency and microorganism susc
99.999% for bacteria. This would be achieved in each example with a higher
b 100% kill; viability tested only at 15, 30, 45, 60, and 120 min.
are susceptible to heat or filtration.) Bacterial spores, such as
Bacillus anthracis, are relatively resistant to halogens. With
chlorine, however, spores are not much more resistant than
are Giardia cysts; furthermore, they do not normally cause
waterborne enteric disease. Relative susceptibility between
organisms is similar for iodine and chlorine (Table 4).

Understanding factors that influence the disinfection
reaction allows flexibility with greater reassurance. The pri-
mary factors of the first-order chemical disinfection reac-
tion are concentration and contact time.133 To achieve
microbial inactivation in aqueous solution with a chemical
agent, a residual concentration must be present for a speci-
fied contact time. Lower concentrations can be used with
longer contact times. In field disinfection, this can be used
to minimize halogen dose and improve taste or, conversely,
to minimize the required contact time.

Cold water slows chemical reactions; the reaction rate
can be adjusted by longer contact times or higher concentra-
tion of disinfectant chemical. Another important factor in
chemical disinfection is the presence of organic and
kill or inactivationa of select microorganisms

Temp Disinfection
constant
(Ct)a

Reference

5�C (41�F) 0.016 116

8.0 25�C (77�F) 0.15 124

2�C (36�F) 30 138

8.0 5�C (41�F) 2.5 125

5�C 10
1.66

126

25�C (77�F) 0.5 127

25�C (77�F) 35 139

8.0 5�C (41�F) 150 140

2e3�C
(36e37�F)

77 135

5�C (41�F) 153 134

23�C
23�C

15,300
10,400

141

7.0 2e5�C
(36e41�F)

1.3 31

25�C 3 142

5�C (41�F) 15 143

25�C (77�F) 35 139

30�C (86�F) 60b 131

15�C (59�F) 170b 131

5�C (41�F) 480b 131

eptibility. The standard for potable water is 99.99% kill for viruses and
concentration of disinfectant or a longer contact time.
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inorganic contaminants, mainly nitrogen compounds from
decomposition of organisms and their wastes, fecal matter,
and urea. These contaminants react, especially with chlor-
ine, to form compounds with little or no disinfecting ability,
effectively decreasing the concentration of available
halogen.26,115 Halogen demand is the amount of halogen
reacting with impurities. Residual concentration is the
amount of active disinfectant remaining after demand of
the water is met. Halogen demand is associated with turbid-
ity (cloudiness).39 Typical recommendations for field treat-
ment double the amount of chlorine or iodine in cloudy
water; however, it is preferable to use clarification
Table 5. Halogen disinfection products and recommended doses

Add to 1 L or

Iodination techniquesa Amount to ac

Iodine tabsb 0.5 tab (or 1
Tetraglycine hydroperiodide
Emergency drinking water germicidal tablet
Potable aqua
Globaline

2% iodine solution (tincture) 0.2 mL
5 dropsc

10% povidone-iodine solutiond 0.35 mL
8 drops

Saturated solution: iodine crystals in watere 13 mL
Chlorination techniquesf Amount to ac

Sodium hypochlorite (household bleach 5%) 1 drop

Sodium hypochlorite (household bleach 8.25%) 1 drop (in 2 L
1% bleach (CDC-WHO Safe Water System)g 4e5 drops
Calcium hypochloriteh (Redi Chlor [0.1-g tab]) Cannot use in

concentration
Sodium dichloroisocyanurate (NaDCC)i

(Aquatab, Kintab)
0.25 tab of 8
impractical)

Chlorine plus flocculating agent (C-F) Not practical

a World Health Organization recommends only for short-term emergency u
b Iodine tablets were developed by themilitary with the criteria that theywill

10 min because troops in the field may not wait longer. This high concentration
4 mg$L-1 and wait longer. Additionally, the recommendation to use 8 mg$L-1

water first.
c Measure of a drop varies from 16e24 gtt$mL-1, standard 20 gtt$mL-1 is
d Povidone-iodine solutions release free iodine in levels adequate for disinf
e A small amount of elemental iodine goes into solution (no significant iodid

can be added to the crystals hundreds of times before they are completely dis
f Can easily be adapted to large or small quantities of water. Simple field te

ensure adequate residual chlorine. In usual situations, EPA recommends a targ
L-1. Many of the recommended emergency doses exceed this threshold.97 For
g Safe water system for long-term routine household point-of-use water disi

and 4 mg$L-1 in slightly turbid water. This results in a low yet effective targe
ensure sufficient residual.
h Stable, concentrated (70%), dry source of hypochlorite that is used for ch

tablets or granular form. Best formulation for large quantities of water.
i Available in different strengths to treat different volumes of water. Check
techniques prior to chemical disinfection in cloudy water
to improve efficacy and taste.144,145

Because of the difficulty of estimating halogen demand, it
is prudent to use 3 to 4 mg$L-1 as a target halogen concentra-
tion range for clear surface water. Lower concentrations (eg,
2 mg$L-1) can be used for back-up treatment of questionable
tap water or high-quality well water (Tables 5 and 6).
Halogen toxicity

Chlorine has no known toxicity at the concentrations used
for water disinfection. Sodium hypochlorite is not
qt of water

hieve 4 mg$L-1 Amount to achieve 8 mg$L-1

tab in 2 L) 1 tab

0.4 mL
10 drops
0.70 mL
16 drops
26 mL

hieve 2 mg$L-1 Amount to achieve 5
mg$L-1

0.1 mL
2 drops

) 1 drop
8e10 drops

small quantities for low
s

0.25 tab

.5 mg NaDCC (may be 0.5 tab (8.5 mg NaDCC)

for small volumes 0.5 tablet per gal yields 5
mg$L-1

se.
disinfect water, including forGiardia, with a short contact (holding) time of
is not necessary for field disinfection of clear water; it is preferable to target
for cloudy water will result in poor taste, so it is recommended to clarify the

used here.
ection, but scant data are available (see text).
e is present); the saturated solution is used to disinfect drinkingwater. Water
solved.
st kits or swimming pool test kits with color strips are widely available to
et residual of 4 mg$L-1. For household use, the CDC recommends <2 mg$
treatment of large volumes, see formula to calculate in Lantagne (2008).20

nfection recommends a hypochlorite dose of about 2 mg$L-1 in clear water
t residual concentration but requires testing in a particular water source to

lorination of swimming pools. Multiple products available in various size

packaging to determine proper dose.



Table 6. Recommendations for contact time using halogen disinfection in the field

Concentration of halogen Contact time (min) at various water temperatures

5�C (41�F) 15�C (59�F) 30�C (86�F)

2 ppm 240 180 60
4 ppm 180 60 45
8 ppm 60 30 15

Concentration and contact time are based on the most resistant organism, which is theGiardia cyst. These are well beyond the time needed to kill bacteria
and viruses. These contact times have been extended from the usual recommendations in cold water to account for the extended inactivation time required
in very cold water and for the uncertainty of residual concentration.
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carcinogenic; however, reactions of chlorine with certain
organic contaminants yield chlorinated hydrocarbons,
chloroform, and other trihalomethanes, which are consid-
ered to have carcinogenic potential in animal models.
Nevertheless, the risk of severe illness or even death from
infectious diseases if disinfection is not used far exceeds
any risk from byproducts of chlorine disinfection.146

Despite several advantages over chlorine disinfection,
iodine has not gained general acceptance because of concern
for its physiologic activity. Some older data indicate that
iodination of water with a low residual concentration of �1
to 2 mg$L-1 appears safe, even for long periods of time, in
people with normal thyroid function.147,148 This is not the
current recommendation of major agencies. Recently, the
European Union stopped the sale of iodine products used
for water disinfection. The WHO did not set a guideline
value for iodine in drinking water because of a paucity of
data and because it is not recommended for long-term disin-
fection. If the typical wilderness or international traveler dis-
infected 3 L of water a day using 2 to 4 mg$L-1 of iodine, the
ingested amount of iodine would be 6 to 12 mg$d-1, well
above US Institute of Medicine recommended dietary allow-
ance levels. Levels produced by the recommended doses of
iodine tablets are even higher (16 to 32 mg$d-1). Therefore,
the use of iodine for water disinfection should be limited to
short periods of �1 mo. Individuals planning to use iodine
for prolonged periods should have their thyroid examined
and thyroid function tests done to ensure they are initially
euthyroid. Certain groups should not use iodine for water
treatment: pregnant women (because of concerns of neonatal
goiter); those with known hypersensitivity to iodine; persons
with a history of thyroid disease, even if controlled on med-
ication; persons with a strong family history of thyroid dis-
ease (thyroiditis); and persons from countries with chronic
iodine deficiency.149

Improving halogen taste

Objectionable taste and smell limit the acceptance of halo-
gens, but taste can be improved by several means. One
method is to use the minimum necessary dose with a longer
contact time, as in the CDC safe water system. Another
method is to use higher doses and remove the taste through
chemical reduction of chlorine to chloride and iodine to
iodide; these have no color or taste. The best andmost readily
available agent is ascorbic acid (vitamin C), available in crys-
talline or powder form. A small pinch in a liter, mixed after
the required contact time, will usually suffice. Ascorbic
acid is a common ingredient of flavored drink mixes,
accounting for their effectiveness in removing the taste of
halogens. GAC (see above) adsorbs organic and inorganic
chemicals, including iodine and chlorine byproducts, thereby
improving odor and tastedthe reason for its common inclu-
sion in field filters.

Improvisational techniques

There is no comparable substitute for proven chemical disin-
fectants, but there are many common substances that contain
halogens. Household bleach is available in most parts of the
world. The active disinfectant is sodium hypochlorite. Pro-
ducts for disinfection of swimming pools and spas generally
contain calcium hypochlorite that provides much higher con-
centrations than bleach. Hypochlorite is readily released
from different products formulated in liquid, powder, gran-
ules, and tablets. Iodine is also available in liquid or tablets;
a common household source is tincture of iodine or similar
topical disinfectants with an iodine concentration of 2 to
8%. These products also contain iodide, which has no disin-
fecting power but does contribute to iodine toxicity. Color-
less iodine solution contains only iodide and should not be
used. Povidone-iodine, a topical disinfectant commonly
used in medical settings, contains active iodine bound to a
neutral polymer of high molecular weight that gives the
iodine greater solubility and stability. In dilute aqueous solu-
tion, povidone-iodine provides a sustained-release reservoir,
releasing free iodine in a concentration of 2 to 10 mg$L-1.150

MIXED SPECIES DISINFECTANT (ELECTROLYSIS)

Passing a current through a simple brine salt solution gener-
ates free available chlorine and other mixed species disin-
fectants that have been shown to be effective against
bacteria, viruses, Cryptosporidium, and bacterial
spores.151,152 The process is well described and can be
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used on both large and small scales. The main disinfectant
effect is probably attributable to a combination of chlorine
dioxide, ozone, superoxides, and hypochlorous acid, giving
the resulting solution greater disinfectant ability than a sim-
ple solution of sodium hypochlorite. Small units are now
available commercially that use salt, water, and a 12-volt
direct current (automobile) battery to create 60 mL of a
0.75% chlorine solution over a 5-min operation cycle that
will treat up to 200 L of water.

Other common substances, including hydrogen perox-
ide and citrus juice that have some disinfectant activity,
are discussed later.

Assessments of supporting evidence:

� Halogens chlorine and iodine are an effective means of
disinfecting water of bacteria, viruses, and Giardia in
the field or household when using appropriate contact
time and halogen concentration. Evidence grade: 1A

� Usual field concentrations of iodine and chlorine are not
effective for other protozoa including Cryptosporidium
and Cyclospora. Evidence grade: 2A

� Extended use of iodine should be weighed against risks
of iodine toxicity. Evidence grade: 1B

� Simple techniques for improving taste of halogenated
water are available for field use. Evidence grade: 1B

� Mixed species electrolytic disinfection techniques are
effective for water disinfection of microbes that are sus-
ceptible to halogens. Evidence grade: 1B

MISCELLANEOUS DISINFECTANTS

Chlorine dioxide

Chlorine dioxide (ClO2), a potent biocide, has been used for
many years to disinfect municipal water and in numerous
other large-scale applications. Until recently, the benefits
of chlorine dioxide have been limited to large-scale applica-
tions because standard formulations must be made on-site
and are associated with a risk for producing volatile gas.
Newer methods enable cost-effective and portable ClO2

generation and distribution for use in an ever-widening
array of small-scale applications. ClO2-production tablets
contain 6.4% sodium chlorite as the active ingredient.
After a tablet is added to water, a series of complex chemi-
cal reactions occurs, generating chlorine dioxide. Some of
the intermediary chemical compounds may also have anti-
microbial activity.

ClO2 has no taste or odor in water. It is capable of inac-
tivating most waterborne pathogens, including Cryptospor-
idium parvum oocysts.153e155 It is at least as effective a
bactericide as chlorine and far superior for virus and para-
site inactivation. Several commercial point-of-use applica-
tions use ClO2 in liquid or tablet form, but relatively few
data are available on product testing these products.137 A
major disadvantage for field use of tablets is the long reac-
tion or contact time required, with upward of 2 to 4 h
needed to achieve dependable disinfection. ClO2 does not
produce a lasting residual, and water undergoing chlorine
dioxide disinfection must be protected from sunlight.

Assessment of supporting evidence:

� Chlorine dioxide is a widely used and potent water disin-
fectant, including efficacy against the protozoan parasites
Cryptosporidium. Evidence grade: 1A

� Individual use products have limited data demonstrat-
ing effective concentration and contact time.
Evidence grade: 2B

Silver

Silver ion has bactericidal effects in low doses and some
attractive features, including absence of color, taste, and
odor. Scant data for disinfection of viruses and proto-
zoan cysts indicate limited effect, even at high doses.
Moreover, the concentrations are strongly affected by
adsorption onto the surface of any container. Silver is
physiologically active but not likely to cause a problem
in concentrations found in drinking water. The EPA has
not approved silver for primary water disinfection in the
United States, but silver is approved as a water preser-
vative to prevent bacterial growth in previously treated
and stored water. In Europe, silver tablets are sold for
field water disinfection. One rational combination pro-
duct combines silver with hypochlorite for both disin-
fection and preservation. There is some promise in
steady release products and incorporation into
nanoparticles.156

Assessment of supporting evidence:

� Use of silver in wilderness settings should be limited to
water preservation and not as a primary disinfectant.
Evidence grade: 1B

Hydrogen peroxide

Hydrogen peroxide is a strong oxidizing agent that is
widely used as a preservative in food, as a sterilant for med-
ical and food equipment, and in many other applications.
Although hydrogen peroxide can sterilize water, it is not
widely used as a field water disinfectant, perhaps because
high concentrations known to be effective are very caustic,
and there is a lack of data for protozoal cysts and quantita-
tive data for dilute solutions. It can be used to remove the
taste of hypochlorite and in combination with other
processes.157

Assessment of supporting evidence:

� Hydrogen peroxide in typical concentration of 3% cannot
be used as a primary drinking water disinfectant, and



Table 7. Summary of field water disinfection techniques

Bacteria Viruses Giardia/Ameba Cryptosporidium Nematodes/Cercarea

Heat þ þ þ þ þ
Filtration þ þ/�a þ þ þ
Halogens þ þ þ � þ/�b

Chlorine dioxide and photocatalytic þ þ þ þ DNAb

DNA, data not available.
a Most filters make no claims for viruses. Ultrafiltration with hollow fiber technology and reverse osmosis is effective.
b Eggs are not very susceptible to halogens but have very low risk of waterborne transmission. No data available for photocatalytic disinfection.
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effective concentrations are not practical for field use.
Evidence grade: 1B

Citrus and potassium permanganate

Both citrus juice and potassium permanganate have some
demonstrated antibacterial effects in an aqueous solution.-
158 However, data are few and not available for effect on
cysts. In municipal water disinfection, potassium perman-
ganate is used primarily for reducing contaminants to
improve taste and odor.159 Either substance could be used
in an emergency to reduce bacterial and viral contamination
or as an adjunct in combination with another technique, but
they cannot be recommended as a primary means of water
disinfection.
Table 8. Efficacy and effectiveness of point-of-use technologies for

Treatment process Pathogen Optimal log reductiona

Ceramic filters Bacteria 6
Viruses 4
Protozoa 6

Free chlorine Bacteria 6
Viruses 6
Protozoa 5

Coagulation/Chlorination Bacteria 9
Viruses 6
Protozoa 5

Biosand filtration Bacteria 3
Viruses 3
Protozoa 4

SODIS Bacteria 5.5
Viruses 4
Protozoa 3

SODIS, solar disinfection.
Data from multiple studies, analyzed and summarized by Sobsey et al (2008)
Data also from references47,166e168 and Table 7.8 in WHO (2011).26
a Skilled operators using optimal conditions and practices (efficacy); log red

log ¼ 99.999% removal).
b Actual field practice by unskilled persons (effectiveness) depends on wate

and other factors.
c Summary estimates from published data vary with consistency and correc

household sanitation measures.
Assessment of supporting evidence:

� Citrus juice and potassium permanganate have limited
applications for drinking water disinfection.
Evidence grade: 1C

Nanoparticles: solar photocatalytic disinfection

Several nanomaterials have been shown to have strong anti-
microbial properties and are being evaluated for use in
water disinfection and purification.160,161 The metals are
of particular interest for water disinfection applications
because they can be activated byUV light to produce potent
oxidizers that are excellent disinfectants for microorgan-
isms and can break down complex organic contaminants
and even most heavy metals into nontoxic forms. Titanium
developing world households

Expected log reductionb Diarrheal disease reduction (%)c

2 63 (51e72) for candle filters
46 (29e59) for bowl filters0.5

4
3 37 (25e48)
3
3
7 31 (18e42)
2e4.5
3
1 47 (21e64)
0.5
2
3 31 (26e37)
2
1

.165

uction: pretreatment minus posttreatment concentration of organisms (eg, 6

r quality, quality, and age of filter or materials, following proper procedure,

t use of technique, integrity of techniques (eg, cracked filter), and other
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dioxide (TiO2) is the most effective photocatalytic sub-
stance identified to date. Recent work demonstrated inacti-
vation of Cryptosporidium by titanium dioxide.161,162

These methods are widely used in industry, but few pro-
ducts have incorporated the technology into individual or
small group point of use products.163,164

Assessment of supporting evidence:

� New technology using nanoparticles and photocatalytic
disinfection is highly promising for translation into
point-of-use water disinfection. Evidence grade: 2A

PREFERRED TECHNIQUE

The optimal water treatment technique for an individual or
group will depend on the number of persons to be served,
space and weight accommodations, quality of source
water, personal taste preferences, and fuel availability.
Because halogens are not effective for killing Cryptospori-
dium at drinking water concentrations and common micro-
filters are not reliable for virus removal, optimal protection
for all situations may require a 2-step process of 1) filtration
or C-F, followed by 2) halogenation. Heat (boiling) is effec-
tive as a 1-step process in all situations but will not improve
the esthetics of the water. Table 7 summarizes effects of
major water disinfection methods on categories of microor-
ganisms. Persons living or working in communities where
sanitation and water treatment are lacking are at higher
risk than the average international traveler. Sobsey et al
reviewed data for point-of-use methods for household dis-
infection in developing countries165 (Table 8).

In disaster situations such as floods, hurricanes, and
earthquakes, sanitation and water treatment facilities are
frequently damaged or inundated, so household or point-
of-usewater disinfection is advised. Chlorine is the simplest
method, similar to household water disinfection where
there is no sanitation or improved water sources.20,99,169

Cloudy water should first be clarified before using
hypochlorite.

On long-distance ocean-going boats where water must
be desalinated as well as disinfected during the voyage,
only reverse osmosis membrane filters are adequate.
Water storage also requires consideration. Iodine will
work for short periods only (ie, weeks) because it is a
poor algaecide. For prolonged storage, water should be
chlorinated and kept in a tightly sealed container to reduce
the risk of contamination. For daily use, narrow-mouthed
jars or containers with water spigots prevent contamination
from repeated contact with hands or utensils.170

Relatively few studies compare multiple techniques or
devices.28,92,96,168,171e179 For more detailed discussion of
disinfection techniques and available devices, see Backer.180

For reviews of water disinfection techniques and
effectiveness and efficacy data, see the following additional
references.69,168,181,182

Sanitation

Sanitation and water treatment are inextricably linked. Stu-
dies in developing countries have demonstrated a clear ben-
efit of safe drinking water, hygiene, and adequate sanitation
in the reduction of diarrheal illness and other infections.-
183e188 The benefit is greater when all are applied together,
especially with appropriate education.24,189 Personal
hygiene, particularly handwashing, prevents spread of
infection from food contamination during preparation of
meals.190,191 Disinfection of dishes and utensils is accom-
plished by rinsing in water containing enough household
bleach to achieve a distinct chlorine odor. Use of halogen
solutions or potassium permanganate solutions to soak
vegetables and fruits can reduce microbial contamination,
especially if the surface is scrubbed to remove dirt or
other particulates, but neither method reaches organisms
that are embedded in surface crevices or protected by
other particulate matter.192 Travelers to remote villages,
wilderness areas, and persons in disaster situations should
ensure proper waste disposal to prevent additional contam-
ination of water supplies. Human waste should be buried 20
to 30 cm (8 to 12 in) deep, at least 30 m (100 ft) from any
water, and at a location from which water run-off is not
likely to wash organisms into nearby water sources. Groups
of 3 persons or more should dig a common latrine to avoid
numerous individual potholes and inadequate disposal.

Conclusion

Wilderness and international travelers should carry an
effective means of disinfecting water. It is important for dis-
aster and medical relief workers to understand the common
methods of water treatment and improvisational methods. It
is not possible for travelers to judge the microbiologic qual-
ity of water, and it is prudent to assume that even tap water
is nonpotable in many locations. Simple and effective field
techniques to improve microbiologic water quality are
available to travelers. It is important to understand the
basic principles and limitations of heat, filtration, and UV
and chemical disinfection and then to become familiar
with at least one technique appropriate for the destination,
water source, and needs of the travelers.
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